Approximate Inverse Preconditioners for General Sparse Matrices

نویسندگان

  • Edmond Chow
  • Yousef Saad
چکیده

The standard Incomplete LU (ILU) preconditioners often fail for general sparse indeenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI?AMk F , where AM is the preconditioned matrix. An iterative descent-type method is used to approximate each column of the inverse. For this approach to be eecient, the iteration must be done in sparse mode, i.e., with`sparse-matrix by sparse-vector' operations. Numerical dropping is applied to each column to maintain sparsity in the approximate inverse. Compared to previous methods, this is a natural way to determine the sparsity pattern of the approximate inverse. This paper discusses options such as Newton and`global' iteration, self-preconditioning, dropping strategies, and factorized forms. The performance of the options are compared on standard problems from the Harwell-Boeing collection. Theoretical results on general approximate inverses and the convergence behavior of the algorithms are derived. Finally, some ideas and experiments with practical variations and applications are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems

Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...

متن کامل

Wavelet Sparse Approximate Inverse Preconditioners

There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle [21] and Chow and Saad [11] also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse ent...

متن کامل

Approximate Inverse Preconditioners via Sparse-Sparse Iterations

The standard incomplete LU (ILU) preconditioners often fail for general sparse in-deenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI ? AMk F , where AM is the preconditioned matrix. An iterative descent-type met...

متن کامل

Approximate Inverse Preconditioners for Some Large Dense Random Electrostatic Interaction Matrices

A sparse mesh-neighbour based approximate inverse preconditioner is proposed for a type of dense matrices whose entries come from the evaluation of a slowly decaying free space Green’s function at randomly placed points in a unit cell. By approximating distant potential fields originating at closely spaced sources in a certain way, the preconditioner is given properties similar to, or better th...

متن کامل

Some Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods

In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994